Randomized construction diagrams * incremental of abstract Voronoi Rolf
نویسندگان
چکیده
Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider class of abstract Voronoi diagrams than the algorithms presented in by Klein (1989) and, Mehlhorn, Meiser and O’Dunlaing (1991). l It can be adapted to a concrete kind of Voronoi diagram by providing a single basic operation, namely the construction of a Voronoi diagram of five sites. Moreover, all geometric decisions are confined to the basic operation, and using this operation, abstract Voronoi diagrams can be constructed in a purely combinatorial manner.Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider class of abstract Voronoi diagrams than the algorithms presented in by Klein (1989) and, Mehlhorn, Meiser and O’Dunlaing (1991). l It can be adapted to a concrete kind of Voronoi diagram by providing a single basic operation, namely the construction of a Voronoi diagram of five sites. Moreover, all geometric decisions are confined to the basic operation, and using this operation, abstract Voronoi diagrams can be constructed in a purely combinatorial manner.
منابع مشابه
Randomized Incremental Construction of Abstract Voronoi Diagrams
Abstract Voronoi diagrams were introduced by R . Klein [Kle89b, Kle88a, Kle88b] as an axiomatic basis ofVoronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(nlogn) by a randomized algorithm, which is based on Clarkson and Shor's randomized incremental construction technique [CS89]. The new algorithm has the following advantages over previous algorithms: • It can handle...
متن کاملOn the Construction of Abstract Voronoi Diagrams
We show that the abstract Voronoi diagram of n sites in the plane can be constructed in time O(n log n) by a randomized algorithm. This yields an alternative, but simpler, O(n log n) algorithm in many previously considered cases and the first O(n log n) algorithm in some cases, e.g., disjoint convex sites with the Euclidean distance function. Abstract Voronoi diagrams are given by a family of b...
متن کاملAn Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system tha...
متن کاملVoronoi Diagrams in Linear Time ∗
Voronoi diagrams are a well-studied data structure of proximity information, and although most cases require Ω(n log n) construction time, it is interesting and useful to develop linear-time algorithms for certain Voronoi diagrams. We develop a linear-time algorithm for abstract Voronoi diagrams in a domain where each site has a unique face and no pair of bisectors intersect outside the domain....
متن کاملAbstract Voronoi diagrams revisited
Voronoi Diagrams Revisited Rolf Klein∗ Elmar Langetepe∗ Zahra Nilforoushan† Abstract Abstract Voronoi diagrams [21] were designed as a unifying concept that should include as many concrete types of diagrams as possible. To ensure that abstract Voronoi diagrams, built from given sets of bisecting curves, are finite graphs, it was required that any two bisecting curves intersect only finitely oft...
متن کامل